# 34 Current electricity

## 34.1

- (a) Draw a circuit diagram of a bulb connected to an ammeter and a battery so that the bulb and ammeter both work.
- (b) What property is the ammeter measuring?

## 34.2

What current would you expect to see on the ammeters in Figure 34.1?

X \_\_\_\_\_\_Y \_\_\_\_\_\_

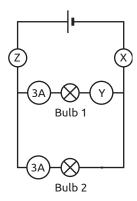
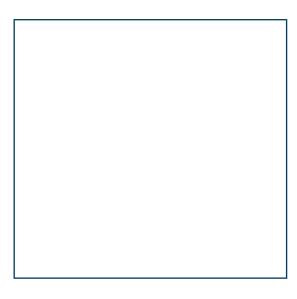




Figure 34.1

## 34.3

- (a) In the box provided, draw a circuit diagram of a bulb in circuit with a battery.
- **(b)** Draw a voltmeter connected correctly to measure the potential difference across the bulb.
- **(c)** In the diagram indicate the positive side and negative side on the battery symbol.



#### 34.4

Name (from left to right) the circuit symbols shown in Figure 34.2.

- (a) \_\_\_\_\_
- (b) \_\_\_\_\_
- (c) \_\_\_\_\_
- (d) \_\_\_\_\_
- (e)

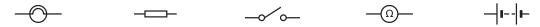
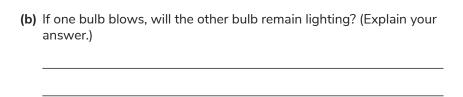




Figure 34.2

#### 34.5

(a) What term is used to describe the arrangement of bulbs in Figure 34.3?



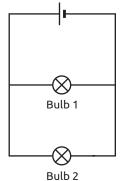



Figure 34.3

## 34.6

- (a) Name the instrument used to measure the resistance of a resistor.
- (b) What is the unit of resistance?
- (c) When the resistance of a circuit increases, the current \_\_\_\_\_\_.

### **34.7**

- (a) Name the instrument used to measure potential difference.
- (b) What is the unit of potential difference?

#### 34.8

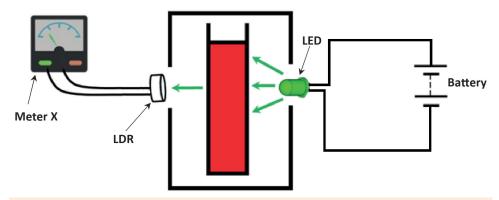
Name (from left to right) the instruments represented by the symbols shown in Figure 34.4.

- (a) \_\_\_\_\_
- (b) \_\_\_\_\_
- (c) \_\_\_\_\_
- (d) \_\_\_\_\_



Figure 34.4

#### 34.9

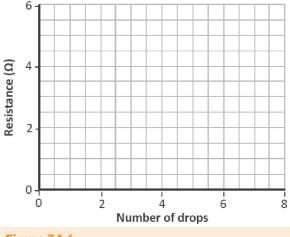

- (a) Name a meter that can measure current.
- **(b)** Name the unit used to measure current.

#### 34.10

When green light is shone into a red solution, such as blood, some of the light is absorbed, some is reflected, and some passes straight through.

A student set up the apparatus shown below to investigate the relationship between the concentration of a red solution and how much green light passes through it.

On one side of the test tube of red solution, green light was emitted from a light-emitting diode (LED). On the other side of the test tube, a light-dependent resistor (LDR) was used to detect how much green light passed through the solution.



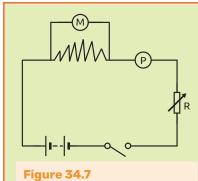

**Figure 34.5** 

The student made different concentrations of a solution of red food dye by varying the number of drops of dye added to 20 cm<sup>3</sup> of water. The resistance of the LDR was then determined using meter **X**. The following results were obtained.

| Number of drops of food colouring | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   |
|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Resistance ( $\Omega$ )           | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 |

(a) In the space below, draw a graph of the results obtained.




**Figure 34.6** 

- (b) State one conclusion which is supported by the results.
- (c) Name meter **X**, which was used to determine the resistance of the LDR.
- (d) Name a piece of equipment the student could have used to accurately measure 20 cm<sup>3</sup> of water.

(SEC 2019 JC Science exam paper)







In Figure 34.7 component R is a:

- (a) Battery
- (c) Variable resistor
- (b) Fixed resistor (d) Diode

Answer:

- In Figure 34.7 component P is:
  - (a) A voltmeter
- (c) An ammeter
- (b) An ohmmeter (d) A resistor

Answer: \_\_\_

#### Acknowledgements

Illustrations by D'Avila Illustration Agency.